Atomic force microscopy of the morphology and mechanical behaviour of barnacle cyprid footprint proteins at the nanoscale.

نویسندگان

  • In Yee Phang
  • Nick Aldred
  • Xing Yi Ling
  • Jurriaan Huskens
  • Anthony S Clare
  • G Julius Vancso
چکیده

Barnacles are a major biofouler of man-made underwater structures. Prior to settlement, cypris larvae explore surfaces by reversible attachment effected by a 'temporary adhesive'. During this exploratory behaviour, cyprids deposit proteinaceous 'footprints' of a putatively adhesive material. In this study, footprints deposited by Balanus amphitrite cyprids were probed by atomic force microscopy (AFM) in artificial sea water (ASW) on silane-modified glass surfaces. AFM images obtained in air yielded better resolution than in ASW and revealed the fibrillar nature of the secretion, suggesting that the deposits were composed of single proteinaceous nanofibrils, or bundles of fibrils. The force curves generated in pull-off force experiments in sea water consisted of regions of gradually increasing force, separated by sharp drops in extension force manifesting a characteristic saw-tooth appearance. Following the relaxation of fibrils stretched to high strains, force-distance curves in reverse stretching experiments could be described by the entropic elasticity model of a polymer chain. When subjected to relaxation exceeding 500 ms, extended footprint proteins refolded, and again showed saw-tooth unfolding peaks in subsequent force cycles. Observed rupture and hysteresis behaviour were explained by the 'sacrificial bond' model. Longer durations of relaxation (>5 s) allowed more sacrificial bond reformation and contributed to enhanced energy dissipation (higher toughness). The persistence length for the protein chains (L(P)) was obtained. At high elongation, following repeated stretching up to increasing upper strain limits, footprint proteins detached at total stretched length of 10 microm.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Towards a nanomechanical basis for temporary adhesion in barnacle cyprids (Semibalanus balanoides).

Cypris larvae of barnacles are able to use a rapidly reversible temporary adhesion mechanism for exploring immersed surfaces. Despite decades of research interest, the means by which cyprids maintain attachment with surfaces prior to permanent settlement remain poorly understood. Here, we present novel observations on the morphology of 'footprints' of a putative adhesive secretion deposited by ...

متن کامل

Exploring mechanism of xanthate adsorption on chalcopyrite surface: An atomic force microscopy study

In this work, adsorption of the potassium amyl xanthate collector on the pure chalcopyrite surface was studied by applying atomic force microscopy (AFM). The adsorption experiments were carried out at different concentrations of the collector and at diverse pH values in the presence or absence of exterior ions. The changes occurring in the surface morphology of chalcopyrite due to the collector...

متن کامل

Nanostructured Single Crystals Sandwiched between Ordered/Disordered Coily and Rod Brushes

Single crystals of poly(ethylene glycol) (PEG)-b-polystyrene (PS), PEG-b-poly(methyl methacrylate) (PMMA), PEG-b-polycaprolactone (PCL), and polyaniline (PANI)-b-PEG-b-PANI were developed from dilute solutions and thin molten films using self-seeding methodology. The PS and PMMA grafted chains were categorized in disordered nano-brushes; however, the PCL and PANI ones were grouped in ordere...

متن کامل

Confocal microscopy-based goniometry of barnacle cyprid permanent adhesive.

Biological adhesives are materials of particular interest in the fields of bio-inspired technology and antifouling research. The adhesive of adult barnacles has received much attention over the years; however, the permanent adhesive of the cyprid - the colonisation stage of barnacles - is a material about which very little is presently known. We applied confocal laser-scanning microscopy to the...

متن کامل

Confocal microscopy - based goniometry of barnacle cyprid permanent adhesive 4 5

1 1 2 Short Communication: 3 Confocal microscopy-based goniometry of barnacle cyprid permanent adhesive 4 5 Nick Aldred, Neeraj V. Gohad, Luigi Petrone, Beatriz Orihuela, Bo Liedberg, Thomas Ederth, 6 Andrew Mount, Dan Rittschof and Anthony S. Clare. 7 8 School of Marine Science and Technology, Newcastle University, NE1 7RU, UK. 9 Okeanos Research Group, Department of Biological Sciences, 132 L...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Journal of the Royal Society, Interface

دوره 7 43  شماره 

صفحات  -

تاریخ انتشار 2010